Normal matrix polynomials with nonsingular leading coefficients

نویسندگان

  • NIKOLAOS PAPATHANASIOU
  • PANAYIOTIS PSARRAKOS
  • P. Psarrakos
چکیده

In this paper, we introduce the notions of weakly normal and normal matrix polynomials, with nonsingular leading coefficients. We characterize these matrix polynomials, using orthonormal systems of eigenvectors and normal eigenvalues. We also study the conditioning of the eigenvalue problem of a normal matrix polynomial, constructing an appropriate Jordan canonical form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On condition numbers of polynomial eigenvalue problems with nonsingular leading coefficients

In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, th...

متن کامل

Triangularizing Quadratic Matrix Polynomials

We show that any regular quadratic matrix polynomial can be reduced to an upper triangular quadratic matrix polynomial over the complex numbers preserving the finite and infinite elementary divisors. We characterize the real quadratic matrix polynomials that are triangularizable over the real numbers and show that those that are not triangularizable are quasi-triangularizable with diagonal bloc...

متن کامل

Relatively prime polynomials and nonsingular Hankel matrices over finite fields

The probability for two monic polynomials of a positive degree n with coefficients in the finite field Fq to be relatively prime turns out to be identical with the probability for an n × n Hankel matrix over Fq to be nonsingular. Motivated by this, we give an explicit map from pairs of coprime polynomials to nonsingular Hankel matrices that explains this connection. A basic tool used here is th...

متن کامل

On condition numbers of polynomial eigenvalue problems

In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, th...

متن کامل

Hermitian Matrix Polynomials with Real Eigenvalues of Definite Type. Part I: Classification

The spectral properties of Hermitian matrix polynomials with real eigenvalues have been extensively studied, through classes such as the definite or definitizable pencils, definite, hyperbolic, or quasihyperbolic matrix polynomials, and overdamped or gyroscopically stabilized quadratics. We give a unified treatment of these and related classes that uses the eigenvalue type (or sign characterist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008